
ISRAEL JOURNAL OF MATHEMATICS 139 (2004), 93-137 

EMBEDDING GRAPHS WITH BOUNDED DEGREE 
IN SPARSE PSEUDORANDOM GRAPHS* 

BY 

Y .  KOHAYAKAWA** 

Instituto de Matemdtica e Estatistica, Universidade de Sdo Paulo 

Rua do Matdo 1010, 05508 090 Sdo Paulo, SP, Brazil 

e-mail: yoshi@ime.usp.br 

AND 

V .  RODL t 

Department of Mathematics and Computer Science, Emory University 

Atlanta, GA 30322, USA 
e-mail: rodl@mathcs.emory.edu 

AND 

P .  SISSOKHO ;t 

Department of Mathematics, Illinois State University 

Normal, IL 61790-4520, USA 
e-mail: psissok@ilstu.edu 

ABSTRACT 

In this paper, we show the equivalence of some quasi-random properties 
for sparse graphs, tha t  is, graphs G with edge density p = IE(G)I/(2) = 
o(1), where o(1) --+ 0 as n = IV(G)I --~ oo. Our main result (Theorem 16) 
is the following embedding result. For a graph J, write N j ( x )  for the 
neighborhood of the vertex x in J, and let (~(J) and A(J)  be the minimum 

and the maximum degree in J. Let H be a triangle-free graph and set 

d/~ = max{5(J):  J C_ H}. Moreover, put  DH = min{2dH,A(H)}.  Let 
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C > 1 be a fixed cons tan t  and  suppose  p = p(n) >> ? 1 - 1 / D H  . We show 

tha t  if G is such tha t  

(i) d e g a ( x  ) ~ Cpn for all x E V(G), 

(ii) for all 2 < r < DH and  for all dis t inct  vertices x l , . . .  ,Xr C V(G) ,  

IN~(xl) n . . .  n Na(xr)l <_ CnpL 

(iii) for all bu t  at  mos t  o(n 2) pairs {Xl,X2} C_ V(G), 

IINc(xl) n Nc(x2)l - np21 = o(np2), 

t hen  the  n u m b e r  of labeled copies of H in G is 

N(H, Gn) = (t + o(1))nlV(H)lp IE(H)I. 

Moreover, we discuss a se t t ing  under  which an arbi t rary  g raph  H (not 

necessari ly triangle-free) can be embedded  in G. We also present  an  

embedd ing  result  for directed graphs.  

1. I n t r o d u c t i o n  

Let H be a fixed graph with k vertices and e edges. In what follows, o(1) terms 

denote functions of n such that  o(1) --+ 0 as n --+ oc. It  is well known that,  for 

any constant p, asymptotically ahnost surely the random graph G(n,p) contains 

(1 + o(1))nkp e labeled (not necessarily induced) copies of H. Throughout this 

paper, we think of a l abe l ed  c o p y  of a graph H in a graph G as an injective 

function from V(H) to V(G) that  preserves edges. 

Let k > 4 be a fixed integer and p E (0, 1). Suppose we have a sequence of 

graphs {Gn}nc¢=l, where Gn has n vertices and (1 + o(1))P(2) edges. We say 

that  {G,~}n~__l is ( k , p ) - q u a s i - r a n d o m ,  or simply q u a s i - r a n d o m  for short, if 

G~ contains (1 + o(1))n~p e labeled (not necessarily induced) copies of H for any 

graph H with k vertices, where e is the number of edges in H.  It turns out that,  

for constant p, this notion of quasi-randomness can be equivalently described in 

terms of some other properties involving parameters other than the number of 

subgraphs (see [9, 21] and also [6, Chapter 9]). When p = o(1) (i.e., p --+ 0 as 

n --+ oc), some of these properties fail to describe quasi-randonmess in the above 

sense. 

In this paper, we investigate quasi-random sparse graphs. We consider both 

directed and undirected graphs. In Section 1, we outline some well-known results 

about quasi-random graphs, when p is constant, as well as a few new results 

when p = o(1). In Sections 2 and 3, we state and prove our main results. We 
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present the proofs of our results for undirected graphs in Sections 3.2 and 3.4 

and sketch the proof of our result for directed graphs in Section 3.3. In Section 

4, we present some auxiliary facts and related work. In the last section, Section 

5, we summarize a few open questions. 

N O T E  ON TIlE ORGANIZATION OF THE PAPER. The reader who is not familiar 

with tile earlier results about quasi-random graphs will find this paper basically 

self-contained, with the relevant background and history. To such a reader, we 

suggest to focus on Section 1, Section 2 (up to Conjecture 21), and Section 3. 

The other results (and proofs) of the paper are mainly generalizations of the 

results in the sections indicated above. 

The expert reader may skip Section 1 and move directly to Section 2. In Section 

2, we suggest the reader concentrate on Theorems 16 and 19 and Conjectures 18 

and 21. The proofs of Theorems 16 and 19 and supporting definitions are in 

Section 3. 

Proposition 6 exhibits barriers beyond which Theorem 16 cannot be improved. 

TERMINOLOGY AND NOTATION. Our terminology and notation are fairly stan- 

dard. Our o(1) terms refer to functions that  tend to 0 as n ~ ec. More gen- 

erally, o(f(n))  denotes a function g(n) such that  g(n) / f (n )  ~ 0 as n -+ oc. 

We also write g 0 0  << f (n )  if g(n) = o(f(n)).  Moreover, for A, B, and 5 > 0, 

we write A ~-,5 B to mean ( 1 - 5 ) B  < A < (1 + 5 ) B .  Similarly, we write 

A ¢5 B i f A  < ( 1 - 5 ) B ,  or A > ( l + 5 ) B .  Also, if f (n) a n d g ( n )  are func- 

tions, we write f (n)  ,,o g(n) (resp. f (n)  > g(n)) if l i m n ~  f (n ) /g (n)  = 1 (resp. 

lim,~_.+~ fO~)/g(n) >_ 1). 
For any integer n, let In] = {1 . . . . .  n}. For any set X, we denote the set of all 

r-elements subsets of X by [X]" and we denote the set of all ordered r-tuples of 

X by X" = X x . . .  × X .  The cardinality of X will be denoted by IXI. We use 

the following non-standard notation. If U = (ul . . . . .  uk) is an ordered k-tuple, 

we let U set = {ul . . . . .  uk} be the set of the elements occurring in the vector U. 

Let G = (Is, E) be a graph with vertex set V = V(G) and edge set E = E(G). 

We write N(x)  = Nc;(.v) for the neighborhood of a vertex x in G, and if X C_ V, 

we let N ( X )  = NG(X) be the jo in t ,  or c o m m o n ,  neighborhood 

N N(x) 
x E X  

of the vertices in X. We denote the degree of x C V by deg(x) = degc(x  ) = 

IN(x)[. We denote the number of edges in G by e(G). If X c V, we sometimes 

write e(X)  = e c ( X )  for the number of edges induced by X in G. The maximum 
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and the minimum degree in G are denoted by A(G) and 5(G). For X C_ V, we 

let G[X] be the graph induced by X in G. Usually, Gn denotes a graph on n 

vertices. We call a subset U _C V s t ab l e  (or i n d e p e n d e n t )  if there is no edge 

induced in U. 

Finally, we say that a graph property P holds a s y m p t o t i c a l l y  a l mo s t  su re ly  

(or almost surely) for a graph G E G(n, p) if it holds with probability tending to 

1 as n - +  oo. 

1.1 THE CONSTANT DENSITY CASE. The subject of quasi-random graphs was 

introduced in the eighties by Thomason [21] and Chung, Graham and Wilson 

[9]. They realized the surprising fact that several important properties shared by 

almost all graphs are asymptotically equivalent in a deterministic sense. See also 

[1, 4, 11, 18] for related initial work in this area and [20] for a recent development. 

These equivalent properties are satisfied almost surely by a random graph in 

which every edge is chosen independently with probability p -- 1/2. In general 

one may consider a random graph G(n,p) on n vertices in which every edge is 

chosen independently with a constant probability p E (0, 1). Then one can show 

that the following properties hold for Gn E ~(n, p) asymptotically almost surely. 

NSUB(k): For any graph H on k vertices, the number of labeled (not necessarily 

induced) copies of H in Gn is 

N(H, Gn) = (1 + O(1))nkp e, 

where e is the number of edges in H. 

DISC: For all X, Y C_ V(Gn) with X N Y = 0, if e(X, Y) denotes the number 

of edges between X and Y then 

le( X, Y) - pIXIfYll = o(pn2). 

EIG: Let A = (ax,y)x,ycV(Gn) denote the 0-1 adjacency matrix of Gn, with 

1 denoting edges. Let Ai (1 < i < n) be the eigenvalues of A and adjust the 

notation so that A1 >_ IA21 _>"" _> IAnl. Then 

A, = (1 +o(1) )pn  and IA2l = o(pn). 

CYCLE(4): If C4 denotes the 4-cycle, i.e., the cycle of length 4, then 

N(C4, Gn) = (1 + o(1))(pn) 4. 

TUPLE(s) :  For all r E [s] = {1 , . . . , s } ,  we have 
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[IN(x1) n . . .  n N(xr)l - np~'l = o(prn), 

for all but at most o(n ~') r-element sets { x l , . . . ,  x~} C_ V(Gn). 
Above, s and k are arbitrary fixed constants. The following theorem holds (see 

[9] and [21]). 

THEOREM 1: Let k > 4 be a fixed integer. Let Gn be a graph on n vertices and 

(1 + o(1))p(~) edges for some fixed p • (0, 1). If  Gn satisfies any of the properties 

NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(2), then it satisfies a11 of them. 

Remark 2: Note that the property NSUB(k) depends on a parameter k. It is not 

hard to show that, for any k, property NSUB(k + 1) implies property NSUB(k) 

(see Fact 47). Perhaps quite surprisingly, it follows from Theorem 1 that property 

NSUB(k) implies property NSUB(k + 1) as well, as long as k _> 4. 

To make our assertions more precise, we may substitute the o(1) terms that 

appear in the definitions of NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(s) 

by a parameter e > 0. We then obtain the properties for n-vertex graphs Gn 
given below. In what follows, unless explicitly stated otherwise, we let 

NSUB,(k): For any graph H on k vertices, the number of labeled (not neces- 

sarily induced) copies of H in Gn satisfies 

(1 - e)nkp e < g ( u ,  G~) < (1 + ~)nkp ~, 

where e is the number of edges in H. 

DISCe: For all X,  Y c_ V(Gn) with X fq Y = 0, if e(X, Y) denotes the number 

of edges between X and Y then 

le(X, Y )  - p lxIIYII  < cpn 2. 

EIG~: Let A = (ax,y)x,v6v(a n 
1 denoting edges. Let hi (1 < 

notation so that A1 >_ tA21 _> .-. 

CYCLE~(4): 

) denote the 0 1 adjacency matrix of Gn, with 

i < n) be the eigenvalues of A and adjust the 

> IA~I. Then 

(1 - e)pn < A1 < (1 + e)pn and 1~21 < ~pn. 

We have 

(1 - ()(pn) 4 < N(C4, Gn) < (1 + e)(pn) 4. 
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TUPLEe(s):  For all r • Is] = {1 , . . . , s } ,  we have 

IIN(x,) n . . .  n N(xr)] - np" I < ep~ n, 

for all but at most e(n) r-element sets {x 1 . . . .  ,Xr} C V(Gn). 

Remark 3: 
(a) The equivalence between two properties in Theorem 1, say P and Q, should 

be understood in the following way. Property P implies property Q for a 
G oc c~ sequence of graphs { n},~=l (we write P ~ Q for {G.}n=l  ) if the following 

holds: 

(*) For all e > 0, there exist (f > 0 and no such that any graph Gn with 

n >_ no vertices satisfying P6 satisfies Q¢ as well. Here, P~ and Q~ stand 

for P and Q with o(1) replaced by 5 and e respectively. 

(b) We will write "P  ~ Q" to mean "P  ==¢, Q for {Gn}n~=l '' when the implicit 

reference to {Gn}n~=l is clear from the context. 

(e) Suppose we have a sequence of graphs {Gn}~=l. We may then define 

the 'density function' p = p(n) of this sequence by putting p = p(n) = 
IE(G~)I(2) -1 for all n. On the other hand, sometimes we prefer to think 

that we have a g iven  function p = p(n), and that our graph sequence 
O<3 {G,~}n=l is such that 

IE(Gn)[ = (I + °(I))P(2 )" 

Although the relationships between {Gn}~=I and p = p(n) in these two 

approaches are different, we may clearly ignore this small difference when 

considering implications of the form P ~ Q with P and Q as above. 

The investigation of quasi-randomness, for constant p E (0, 1), turned out to 

be a fruitful area with several applications in'questions regarding random graphs 

and algorithms (see, e.g., [2 i, [5], [10], [14], [16], [19], and [22]). Some of the open 

questions in this area deal with the problem of generalizing Theorem 1 to the 

case in which p = o(1). 

Before we proceed, we mention that in 1985 Thomason [21, 22] already consid- 

ered the case in which p = o(1). Our approach in this paper is different from the 

one taken by Thomason, who investigated pseudorandom properties with error 

terms that vanish together with p. Our approach is closer in spirit to the one in 

the recent paper by Chung and Graham [8]. 
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1.2 THE VANISHING DENSITY CASE. Ill this section, we turn our attention to 

the study of quasi-randomness when p = o(1). The first efforts towards this direc- 

tion suggest that a generalization of Theorem 1 (which is valid when p E (0, 1) is 

constant) will not be straightforward. Indeed the quasi-random properties listed 

above are no longer equivalent when p = o(1). For instance, property TUPLE(2) 

does not imply property NSUB(3), as we shall see in Proposition 6 below. How- 

ever, some of these quasi-random properties are equivalent under more restrictive 

conditions. 

Let TFSUB(k) be the property NSUB(k) restricted to triangle-free graphs H, 

that is, under TFSUB(k) we require the number of occurrences of triangle-free 

graphs H to be 'correct' in G~ (see Definition 12). For suitable values of p (see 

Theorems 10 and 19), the following diagram holds for "special families of graphs" 

such as the family BDD(C, t) and the family CG(C, t) (see Definitions 4 and 8). 

TFSUB(k) ; .  CYCLE(4) 

ITheorem 19 ~Chung-Graham 
Chung-Graham 

TUPLE(2) > DISC -I :- EIG 

Note that the "missing" link in the above diagram is the implication DISC 

TUPLE(2). Although this implication does not hold in general (see [8] and [14]), 

it is possible that it holds under some natural conditions (such as BDD(C, t) and 

CG(C, t)). If this implication does hold under some special conditions, then the 

properties CYCLE(4), DISC, EIG, TFSUB(k) and TUPLE(2) would all be equiv- 

alent for sequences of graphs satisfying these conditions and BDD (we make this 

precise in Remark 22 below). For p = o(1), the only known counterexamples to 

the implication DISC ~ TUPLE(2) are graphs in which the joint neighborhood 
of a few vertices is very large, that is, graphs for which the property BDD(C, t) 
defined below fails. 

Definition 4: Let constants C > 1 and t >_ 1 be given. We define BDD(C, t) to 

be the family of all graphs G such that, if we let n = IV(G)I and p = IE(G)I / (~) ,  

then 

(i) degc(x ) _< Cpn for all x E V(G), 

(ii) for all 2 < r < t and for all distinct vertices x l  . . . .  , x~ C V(G) ,  

ING(x ) n . . .  n Nc(x,-)l Cnp". 

Remark 5: Note that  BDD(C, t + 1) C_ BDD(C, t). 
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Since the property TFSUB(k) is restricted to the counting of triangle-free 

graphs only, it is natural to ask whether this counting extends to graphs with 

triangles. The following proposition, Proposition 6, shows that there is no hope 

for such an extension for graphs out of the family BDD when p -- o(1) and even 

for graphs in BDD when p = p(n) is of order n -1/3. 

P R O P O S m O N  6: 

(A) For any p = p(n) = o(1) that satisfies p(n) >> n -1/2, there exists a graph 

G sequence { i}/=1, with Iv (G~) I  = n~ -+  ~ as  i - ,  ~ a n d  [ E ( G i ) I  > 

p(ni)(~') for all i, for which the following holds: 

(i) Gi is triangle-free for all i > 1, 

(ii) {Gi}i~l satisfies properties DISC, EIG, and TUPLE(2).  
G o0 (B) There exists a graph sequence { i}i=l, with [V(Gi)I ni -~ oo as i --+ oo 

5/3 
and [E(Gi)[ = (1/8 + o(X))n i , for which (i) and (ii) above hold and, 

furthermore, 

(iii) Gi E BDD(128, 2) for all i > 1. 

The proof of Proposition 6 will be discussed in Section 4.2. 

Remark 7: It would be interesting to know if one can extend Proposition 6 to the 

existence of graphs Gi with [V(Gi)[ = n~ -+ 0o and p(ni) = [E(Gi)[/(n2 ~) >> n• 1/3 

such that  Gi satisfies (i) and (ii) in Proposition 6 and Gi e BDD(C, 2) for all i 

for some fixed constant C. 

Among other problems, the question of the equivalence of the properties EIG, 

DISC, and CYCLE(4), in the sparse setting, was considered in [8] by Chung and 

Graham. Before we discuss their results, we introduce some terminology. 

For any integer t and any two vertices u and v in a graph G, let et(u,v) 

denote the number of paths of length t between u and v. Thus, we always have 

et(u,v)  < 1 and e2(u ,v)= [N(u)N N(v)[. 

Definition 8: Let t _> 2 be an integer and let C > 1 be a fixed constant. Let 

CG(C, t )  denote the family of graphs G such that, putting n = [V(G)[ and 

p = [ E ( G ) I / ( ~ ) ,  we have 

(i) degc~(U ) < Cpn for all u E V(G), 

(ii) et(u,v) < Cptn t-1 for all u, v E V(G). 

Remark 9: One can observe that 

CG(C,t)  C_CG(C 2 , t + l )  and CG(C, 2 ) = B D D ( C ,  2). 
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The next theorem follows from the results of Chung and Graham [8]. 

THEOREM 10: The implications 

(1) CYCLE(4) ~ EIG ~ DISC 

hold for sequence with I V ( a n ) l  = and/E(an)l  = (1 + o(1) )p(~) ,  
as long as p = p(n) >> n - 1 / 2 .  

Remark 11: Chung and Graham have in fact proved that the implication 

DISC ~ EIG 

holds even for fast decreasing functions p = p(n), but assuming an extra hypothe- 

sis that can be expressed in terms of the classes CG(C, t). We refer the interested 

reader to [8]. In the case in which p is constant, all the three properties in (1) 

are equivalent (see also Conjecture 21). 

2. S t a t e m e n t s  of  t h e  m a i n  r e s u l t s  

Now we turn our attention to the main goal of this paper. Complementing 

the work of Chung and Graham [8, 7], we will address the question as to how 

the property NSUB(k) relates to the properties CYCLE(4), DISC, EIG, and 

TUPLE(2) in the sparse setting. We shall consider both undirected and directed 

graphs. 

For the digraph case, we focus on the embedding of triangle-free digraphs into 

sparse pseudorandom digraphs satisfying certain extra conditions. We will only 

present the proofs of our main results in the undirected case, as they can be 

naturally extended to the directed case. 

2.1 THE UNDIRECTED CASE. By Proposition 6 the implication "TUPLE(2) 

NSUB(k)" fails to be true for sequences of graphs with vanishing density. Thus, 

additional conditions are needed in order to obtain any new relation between 

NSUB(k) and the other properties. One such condition is to restrict the family 

of graphs G for which such a relation could exist. Another possibility is to weaken 

property NSUB(k). This leads us to the following two adjustments: 

(i) As in the work of Chung and Graham [8] (see Theorem 10 above), we 

restrict the domain to a special family of graphs G, namely, the family 

BDD(C, t) introduced in Definition 4. 

(ii) We wilt also weaken the property NSUB(k) and focus on counting the 

triangle-free subgraphs only. We refer the reader to Remark 34 tor a dis- 

cussion oil the triangle-freeness condition. 
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Definition 12: Fix an integer k _> 4. We say that a sequence of graphs {G~}n= 1 

with W(Gn)[ = n has the property TFSUB(k) if it satisfies the following condi- 

tion: 

($) For any triangle-~'ee graph H on k vertices, the number of labeled (not 

necessarily induced) copies of H in G,  is 

N(H,  G) = (1 + o(1))nkp e, 

where e is the number of edges in H, and p = e ( G n ) ( 2 )  - 1  

Note that  the only difference between the properties TFSUB(k) and NSUB(k) 

is the triangle-freeness condition. We need the following definitions before we 

may state our first main theorem. 

Definition 13: For any graph H, we let 

dH = max{6(J): J C_ H}. 

Remark 14: If a k-vertex graph H is triangle-free, then dh~ < k/2. 

Definition 15: For any graph H, we let 

D ,  = min{2d, ,  A(H)}. 

We may now state our key result. 

THEOREM 16 (Embedding Lemma): Suppose H is a triangle-free graph on k 

vertices and e edges. Let {Gn}nC~=l be a sequence of graphs with IV(Gn)i = n for 

all n and with p = p ( ~ )  = IE(G~)I(~) -1 satisfying p >> n - l / v " .  Let C > 1 be a 

fixed constant and suppose that Gn E BDD(C, DH) and Gn satisfies TUPLE(2) 

for all n. More explicitly, for all n, we have 

(i) degGn(x ) _< Cpn for all x E V(G~), 

(ii) for all 2 < r < DH and for all distinct vertices Xl . . . .  , x~ E V(G~), 

[Nc,~(X l )  n . . .  n Nc. (xr)l 4_ Cnp r, 

(iii) for all but at most o(n 2) pairs {x~, x2} C V(Gn),  

I tNc~ (x l) n Nan (x2)] - rip2[ = o(np 2). 

Then Gn contains (1 + o(1))nkp e labeled copies of H. 
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Remark 17: 

(a) Replacing the parameter OH by A(H) (the maximum degree of H) may 

help "better understand" the Embedding Lemma. 

(b) Theorem 16 follows from Lemmas 32 and 33; it is proved in Section 3. 

Roughly speaking, Theorem 16 states that property TUPLE(2) implies 

property TFSUB(k) as long as we restrict ourselves to graphs G in an 

appropriate class BDD(C, t), and the density of G is large enough. 

We propose the following conjecture, Conjecture 18. 

CONJECTURE 18: The parameter OH occurring in Theorem 16 may be replaced 

by dH. 

With Theorem 16 in hand, we may deduce the equivalence of some of the 

properties introduced in Section 1.1 for sparse graphs. For convenience, from 

now on {Gn}n=l denotes a sequence of graphs with IV(Gn)I = n. 

THEOREM 19: Let a real number C > 1 and an integer k >_ 4 be fixed. Let 

p = p(n) be a function of n with 

(2) np [2k/Jj >> 1. 

Then properties TFSUB(k),  CYCLE(4), and TUPLE(2) are equivalent for any 

sequence of graphs {Gn}n°°=l with 

(a) Gn • BDD(C, [2k/aJ) 

for all n and IE(G,)I = (1 + o(1))p(~). 

The parameter [2k/JJ in conditions (2) and (3) in Theorem 19 comes from the 

fact that if we let 

(4) D(k)  : m a x D H ,  
H 

where the maximum is taken over all triangle-free graphs on k vertices, then (as 

proved in Fact 35) we have D(k)  = [2k/3] for all k _> 4. 

Remark 20: Note that if Conjecture 18 holds then the condition np [2k/Jj >> 1 

in Theorem 19 may be replaced by the weaker condition np [k/2j ~ 1. 

We also propose the following conjecture. 
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CONJECTURE 21: Let C > 1 be an arbitrary constant, and let p = p(n) >> n -1/2 

be a function of  n. Then the implication 

DISC ~ TUPLE(2) 

holds for any sequence of graphs {an}nC~_l with IE(Gn)[ = (1 + o(1))p(~) as long 

as Gn • BDD(C, 2) for all large enough n. 

Remark  22: If Conjecture 21 holds, then we may add properties DISC and EIG 

to the collection of equivalent properties in Theorem 19. Indeed, this follows 

from the result of Chung and Graham, Theorem 10, stated above. 

To embed general graphs (i.e., graphs that are not necessarily triangle-free) we 

need a stronger property, INDTUP(s)  (s > 1), defined as follows. 

INDTUP(s):  For a l l l < r < s a n d a l l 0 < t <  (~), 

I{X • [V(G,)]r: e (X)  -- t, IN(X)I ¢ upr}l = o(n" pt). 

Remark 23: In the definition of INDTUP above, the expression o(n~p t) that 

appears on the right-hand side of the equation would perhaps more appropriately 

be o(n~pt(1 - p ) ( ; ) - t ) .  However, since we are interested in the case in which 

p = o(1) and s = O(1), we may drop the (1 - p ) ( ~ ) - t  factor, which is roughly 

equal to 1 for such values of p and s. 

We may now state our result concerning the embedding of general, not neces- 

sarily triangle-free graphs. 

THEOREM 24: Let k > 3 be an integer and let C > 1 be a fixed constant. Let 

p = p(n) >> n -1~(k-l) be a function of  n. Then, for any sequence of  graphs 

{Gn}~=l with Gn • BDD(C,k - 1) for all n and [E(Gn)[ = (I + o(1))P(2), we 

have 

(i) NSUB(k + 1) ~ INDTUP(k - 1), 

(ii) INDTUP(k - 1) ~ NSUB(k). 

Perhaps Theorem 24 may be strengthened to the following. 

CONJECTURE 25: Let k >_ 3 be an integer and let C > 1 be a fixed constant. 

Let p = p(n) >> n -1/(k-1) be a function of n. Then the properties NSUB(k) 

and INDTUP(k - 1) are equivalent for any sequence of  graphs {Gn}n°°_ 1 with 

G~ • BDD(C, k - I) for all n and ]E(G~)[ -- (1 + o(1))p(~). 
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2.2 THE DIRECTED CASE. In this section, we state our main result for directed 

graphs, Theorem 26. The proof of this result is discussed in Section 3.3. Let 

be a directed graph with set of vertices V and set of arcs/~. Thus G -- (V,/~), 

where/~ C V x V \ { ( v , v ) :  v E V}, and if (u,v) E /~, then (v,u) ~ JE. We denote 

the out-degree (resp. in-degree) of a vertex u E V by d+(u) (resp. d-(u)).  We 

define 

d++(u,v) = {w E V: (u,w) E /~ and (v,w) E F,}, 

and 

NC(u ) = {v E V: (u,v) E E or (v,u) E E}.  

For any directed graph G we let G be the undirected graph obtained from 

by transforming its arcs to "edges" (ignoring their orientation). With this 

convention, clearly Nd(u  ) = Nc;(u). 
We let BD--~(C, t) be the family of all directed graphs G such that G E 

BDD(C, t). Moreover, below, given a digraph/~, we shall consider the parameters 

dH and DH of the associated undirected graph H. 

Let G = (V,/~) be as above. We introduce the property TUPLE(2 / which is 

analogous to the property TUPLE(2) for undirected graphs. 

TUPLE(2I: G satisfies the property TUPLE(21 if the following holds: 

(a) for all but o(n) vertices u E V, 

(b) 

d+(u ) = 1 -~pn(1 + o(1)), 

(d++(u, v)) 2 = n2(P2n~ 2(1 + o(1)). 

(u,v)EVxV 

Our embedding result for directed graphs is as follows. 

THEOREM 26: Suppose that /~ is a directed graph on k vertices and e arcs 
such that H is triangle-free. Let ~ {Gn}n=t be a sequence of  directed graph with 
[V(Gn)[ -- n for all n and with p -- p(n) = IE(dn)l(.~) -x satisfying p )> n - 1 / o ' .  
Let { a n} n :  1 "  ~ E BD--D~(C, DH) and G~ satisfies TUPLE(21. Then Gn contains 

N ( f t ,  G) = l n k p e ( 1  + o(1)) 

labeled copies of  H in G. 
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3. Proof s  o f  t h e  m a i n  resul ts  

Isr. J. Math. 

3.1 PRELIMINARIES. The  following simple definition will be impor tan t .  

Definition 27 (Degenerate  orderings):  Let H be a graph. We say tha t  H is 

d - d e g e n e r a t e  if there is an ordering V l , . . . , v k  of the vertices of H such tha t  

degH~ (vi) <_ d for all 1 < i < k, where Hi = H[{v l , . . . ,  vi}] is the graph induced 

by {vl . . . .  , vi} in H.  Moreover,  if H is d-degenerate and this is certified by a 

certain ordering of the vertices of H ,  then we call this ordering a d - d e g e n e r a t e  

order ing  of H. 

Remark 28: Let d = du = max{5( J ) :  J C_ H}.  Then  H has a d-degenerate 

ordering. Indeed we can find such an ordering in the following way. First  select a 

ver tex v E V(H)  such tha t  degH(v  ) = 5(H) <_ du (by the definition of dH) and 

set vk = v. Let  Hk-1  = H - vk; then we repeat  the same procedure o n  Hk-1 and 

obta in  a ver tex vk-1 with degH~_1 (vk-1) _< 6(Hk-1) <_ dH. Continuing in this 

way, we obtain  the desired ordering of V(H)  after  k = IV(H)I steps. In fact, dH 

is the smallest  integer for which H admi ts  a d-degenerate ordering. 

The  following well-known result will be used often. 

LEMMA 29: For all ~ > O, there exists eo = eo(71) > 0 such that, for any family 

of real numbers {ai >_ 0:1  < i < n} satisfying the conditions 

(i) Ein__lai > (1 -- ~o)na, 
(ii) V"~ 2 z-~i=l ai <- (1 + e0)na 2, 

we have 

I{'i: ai ~ a}l)(1 - ,/)n. 

Prod: Let ~/> 0 be given. We claim tha t  eo = ~a/3  will do. Let ai (1 < i < n) 

be as in the s t a tement  of our lemma.  Set B = {i: lai - a I > rla}. To prove the 

lemma,  we have to show tha t  IBI < ~n. 

From the definition of B,  it follows tha t  

n 

(5) ~ ( a i -  a) 2 > IBl(~a) 2. 
i=1 

By hypothesis ,  

72 

Z(a -a) 2 
(6) i=a 

n n 

2aZa + Za 
---- a i - -  

i----1 i----1 i=1 

<_(1 + eo)na 2 - 2a(1 - eo)na + na 2 = 3~ona 2. 
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Combining (5) and (6), we obtain IBl(~a) 2 < 3e0na 2, which implies that IBI < 

(3e0/r/2)n = r/n, and our lemma is proved. | 

3.2 PROOF OF THEOREMS 16 AND 19. In this section, we shall prove Theorems 

16 and 19. The proof of Theorem 19 is broken down into a few steps, and two of 

these steps will basically form the proof of Theorem 16 (see Section 3.2.3). 

The proof of Theorem 19 involves the following components. Let k > 4 and 

C > 1 be given. Suppose 

(7) np d(k) >> 1, 

where 

d(k) = max dH, 
H 

and the maximum is taken over all triangle-free graphs H on k vertices. It is 

easy to see that,  in fact, d(k) = [k/2]. However, in what follows, we often prefer 

to write d(k) instead of its explicit value. 

Suppose G,, E BDD(C, D(k)) for all n, where D(k) is as defined in (4). Recall 

that D(k) = [2k/3J. 

Remark 30: The reader may have noticed that our hypothesis on p = p(n) 
above, namely (7), is weaker than the hypothesis in Theorem 19. It turns out 

that (7) is the natural hypothesis for the proof we shall present. However, as 

a simple argument shows, the condition that BDD(C, D(k)) should hold for Gn 

implies that,  in fact, we have p n  D(k) = pn [2k/3j >) 1 (see (2)). 

The proof of Theorem 19 is broken down as follows. 

(a) Let NSUB(C4) be the property NSUB(k) applied to H = C4. Note that 

CYCLE(4) = NSUB(C4). 

Since C4 is a triangle-free graph and TFSUB(k) ~ TFSUB(k - 1) (see Fact 

48), the implication 

TFSUB(k) ~ NSUB(C4) = CYCLE(4) 

is immediate for any any sequence of graphs {Gn}n~__l (recall k _> 4). 

(b) Fact 31 below, which may be proved by standard arguments, asserts that 

CYCLE(4) = NSUB(C4) ~ TUPLE(2),  

for any sequence of dense enough graphs {Gn},~__l. 



108 Y. KOHAYAKAWA, V. RODL AND P. SISSOKHO Isr. J. Math. 

(c) Lemma 32 (see below) tells us that 

TUPLE(2) ~ TUPLE(d(k)). 

(d) The major piece in the proof of Theorem 19 is the implication 

TUPLE(d(k)) ::v TFSUB(k). 

This implication is stated in its equivalent form as Lemma 33 and its proof, 

see Section 33, constitutes the main task of this chapter. 

(f) Finally, the equality D(k) -- [2k/3] is proved ill Fact 35. 

Steps (c) and (d) above basically constitute the proof of Theorem 16 (see 

Section 3.2.3). 

FACT 31: Let C > 1 be a constant and suppose p -- p(n) is such that np 2 >> 1. 

Then the implication 

CYCLE(4) ~ TUPLE(2) 

holds for any sequence of graphs {Gn}n~_-i with IE(Gn)] = (1 + o(1))P(2). 

Proof: Let {Gn}~=l be as in the statement of our result and suppose CYCLE(4) 

holds. We have 

(s) 

{x,y)C_V,x:/:y vEV 

>n(n-l~e2 Vdeg(v)) =n((l+°(21))pn ) 

=(l+o(l))(n2)P2n. 

Observe that the number of labeled (not necessarily induced) copies of C4 in G~ 

is 

(9) N(C4, Gn)=4 E ('NGn(x) ANG'~(Y)') 
{x,y}C_V,x~:y 

Since {Gn}n~__l satisfies property CYCLE(4), we have 

(10) E (]NGn(X) F~NGn(Y)]) 1N(C4'Gn) 7--~(1 
{x,y}CV, x:/=y 

+o(1))(pn) 4. 
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We now observe that the Cauchy-Schwarz inequality tells that 

-1 }2 

{.,y}C_V,x#y {x,y _ ,xyky 

(11) >> ~ ING~ (x) n Nc~ (Y)I, 
{x,y}C_V,x#y 

where in the last inequality we used (8) and the fact that p2n --+ oo as n --~ c~. 

Now from (10) and (11), we obtain that 

(12) E INa~(x) N Nan (Y)I 2 = 1(1 3- o(1))(pn) 4. 

{x,y}C_V,x•y 

Now Lemma 29 together with (8) and (12) imply that 

[NG~(x) n N<~(y)I = (1 + o(1))p2n, 

for all but at most o(n 2) pairs {x, y} C_ V. | 

We sketch the proof of Lemma 32 (stated below) in Section 3.3, by deriving 

it as a corollary of Lemma 41. However, we mention that Lemma 32 was first 

proved in Luczak et al. [17]; the proof of Lemma 41 is a simple extension of the 

proof in [17] to the directed case. 

LEMMA 32: Let t _> 2 and C > 1 be fixed and suppose p -- p(n) satisfies 

G np r >> 1. Let { n}n=l be a sequence of  graphs with Gn E BDD(C, 2) for all n 

and IE(Gn)I = (1 + o(1))P(2). Then the implication 

TUPLE(2) =~ TUPLE(r)  

oo holds for {Gn}n=l. 

To complete the proof of Theorem 19, we need to prove Lemma 33 and Fact 

35 below. 

Let H be an arbitrary triangle-free graph on k vertices and e edges. Recall 

dtt - maxS(J)  and DH = m i n ( 2 d H , A ( H ) }  
J C H  

(see Definitions 13 and 15). 

LEMMA 33: Let 5 > 0, C > 1, and k >_ 4 be fixed. Let H be as above and let 
p = p(n) = o(1) be a function o f n  satisfying np OH >> 1. Then there exist e > 0 
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and an integer n2 for which the following holds. Ira sequence of graphs {Gn }nC~=l 
with [V(G~)I = n is such that, for all n, 

(i) Gn e BDD(C, DH), 

(ii) p = p(n) = e(Gn)(~) -a , 

(iii) TUPLE~(dH) holds for Gn, 

then 

N(H,  Gn) ' ~  nkp e 

holds for all n >_ n2. 

Remark 34: As a prerequisite to our proof of the Embedding Lemma (Theorem 

16), we first strengthen TUPLE(2)  to TUPLE(dH) (see Lemma 32), which re- 

duces the Embedding Lemma to Lemma 33. By the hypothesis of Lemma 33, for 

all r <_ dH, there are ~ nr/r! "good" r-subsets (i.e., X C_ V(G~), IX I = r and 

[NG, (X)[ ~ up"). 

The proof of Lemma 33 is based on an inductive argument in which the vertices 

of H are embedded one by one into Gn. To keep the induction working, we will 

embed H ~ = H - v (in ~ nlV(H')Ip IE(H')I ways) in such a way that  

(t) most of the neighborhoods of the future images of v (in the already em- 

bedded copies of H ~) are "good", i.e., most of the copies of H ~ in Gn have 
npdegn,(V) potential images for v. 

If H is triangle-free, one can show that  most of such neighborhoods form an 

independent set in Gn, which makes it possible to guarantee the property (t) 

above. 

If H is not triangle-free, the number of such neighborhoods is N < pn degg' (v) = 

o(ndegg'(V)), where p = p(n) = o(1) is the density of Gn. In this case, this number 

N is too small to keep the inductive argument working. 

In order to extend the above proof scheme to general graphs H,  we need 

to replace property TUPLE(dH) by a stronger one, namely, INDTUP(dH) (see 

Section 2.1). 

The proof of Lemma 33 is delayed until Section 3.2.2. We finish this section 

with the statement and proof of Fact 35. 

FACT 35: Let an integer k > 1 be given and let D(k) = maxH DH, where the 

maximum is taken over all triangle-free graphs H on k vertices. Then 

L2kj 
D(k) : ~ .  
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Proof: Suppose k _> 1 is given, and let D(k) be as in the statement of the fact. 

We may clearly suppose that  k _> 2. 

First we show that  D(k) >_ [2k/3J. It  suffices to exhibit a triangle-free graph H 

on k vertices for which DH >_ [2k/3J. We show that  the complete biparti te graph 

H = K([k/3], [2k /3J )wi th  vertex classes of cardinality [k/3] and [2k/3] will 

do. We have dH = maXJCHt~(J) >_ 5(H) = [k/3].  Therefore 2dH >_ 2[k/3] _> 

2k/3 >_ [2k/3J. Since A(H)  = [2k/3],  we have DH = min{2du,A(H)}  > 

L2k/3J. 
Let us now show that  D(k) < [2k/3J. To that  end, let H be a triangle-free 

graph on k vertices. We show that  DH <_ 2k/3. Suppose A(H)  > 2k/3. Let u 

be a vertex of H with maximum degree, and suppose Vl , . . . ,  vk is an ordering 

of the vertices of H with the last A(H)  vertices vk-zX(H)+l, . . . ,  Vk forming the 

neighborhood of u in H.  We claim that  this is a ([k/3] - 1)-degenerate ordering 

of the vertices of H. 

To see this, as usual, let Hh = H[{v~,...,vh}] for all 1 < h < k. Since 

H is triangle-free, every vertex vh with k - A(H)  + 1 < h has its neighborhood 

contained in the set {v~, . . . ,  Vk--A(H)}- Thus degHh (vh) <_ k - A ( H )  < k/3 for all 

k - A(H)  + 1 < h < k, hence for all 1 < h < k. Therefore degHh (Vh) < [k/3] - 1 

for all h and we do indeed have a ([k/3] - 1)-degenerate ordering as claimed. 

Hence 2dH <_ 2([k/31 - 1) <_ 2k/3, and hence DH = min{2dH, A(H)}  _< 2k/3, 
as required. | 

3.2.1 The extension lemma and a corollary. In this section, we shall establish 

a simple lemma, the Extension Lemma, and a corollary, Corollary 38. They will 

be used in the proofs of Theorems 16, 19, and 24. 

Let H and G be graphs. In what follows, H will always have k vertices and e 

edges and G will always have n vertices. In this section, H is an arbi trary graph; 

in Sections 3.2.2 and 3.2.3, we shall consider triangle-free graphs H. 

Let g(H, G) denote the set of all embeddings of H in G. Moreover, if l E [k] 

and F = (v l , . . . ,v l )  E V(H) l and X = (Xl , . . . ,x~)  C V(G) z, let E(H,G,F ,X)  
denote the set of all embeddings f E $(H, G) such that  f(vi) = xi for all i E [l]. 

Clearly, we may always assume that  the vi (1 < i < l) and the xi (1 < i < l) are 

all distinct. Recall that  F set = {Vl , . . . ,  vl} and X set = { x l , . . . ,  xl}. 

Below, for any graph H '  and any l-tuple F of vertices of H ' ,  we write w(H', F) 
for the number of edges in H '  that  do not have both endpoints in F set. That  is, 

w(H', F)  = IE(H')I  - IE(H'[fs~t]) I. 

We now prove the following simple lemma. 
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LEMMA 36 (Extension Lemma): Let graphs G and H be given. Suppose 0 <_ 

I < max{2, dH}, and let F E V(H)  l and X E V(G) l be fixed. Let C > 0 be a 

constant and suppose G E BDD(C, DH). Then 

IE(H, G, F, X)l ~ ck-lnk-lp w(H'F), 

where k = IV(H)I, n = IV(G)I, and p = e(G)(2)- ' .  In particular, if F s+t C_ V(H)  

is a stable set, then 
Ig(H, G, F, X)I < Ck-lnk-ZP e, 

where e = [E(H)[. 

In Claim 37 below, we prove the Extension Lemma under a stronger hypothesis. 

We then show that the hypothesis of this claim is satisfied even with the weaker 

assumption of the Extension Lemma. 

CLAIM 37: Let G, H, F and X be as in Lemma 36. Assume (in addition to the 

hypotheses of Lemma 36) that there exists a DH-degenerate ordering vl . . . .  , vk 
of H such that F s+t = { v l , . . . ,  ve}. Then 

]£( H, G, F, X)[ _< Ck-lnk-tp w<H'F), 

where k = IV(H)I, n -  ]V(G)I, and p = e(a)(;)--1. 

Proof: Consider a DH-degenerate ordering Vl , . . . ,  Vk of H with 

f s e t  ~-- {Yl . . . . .  Vl}" 

We shall prove that 

(*) for all l < h < k, we have 

(13) I~(Hh, G, F, X)I ( ch--lnh--lp w(Hh'F), 

where Hh = U [ { v l , . . . ,  Vh}]. 

We prove (*) by induction on h. The case in which h = I is clear. Now suppose 

that 1 < h _< k and that (13) holds for smaller values of h. We wish to prove 

(13). To that end, first observe that,  by our choice of the ordering Vl , . . . ,  vk of 

the vertices of H, we have degHh (vh) <_ DH. Therefore, as G E BDD(C, DH), if 

we let r = degH, (Vh), then any embedding of Hh-1 can be extended in at most 

Cnp r ways to an embedding of Hh. Using the induction hypothesis and the fact 

that  W(Hh, F) = W(Hh-1, F) + r, we have 

Ig(Hh, G, F, X)I <_Cnprlg(Sh_b G, F, X)l  
(Cnp r x ch-I- lnh-t- lp  w(Hh-l'F) = ch--lnh--lp w(Hh'F), 
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verifying (13). This  completes  the induction step and assert ion (*) follows by 

induction. Our  claim follows on set t ing h = k in (13). | 

Proof of Lemma 36: To prove L e m m a  36 we first show tha t  there exist a D(H)-  
degenerate  ordering vl . . . .  , vk of H such tha t  F set -- {V l , . . . ,  ve}. Then  we apply  

Cla im 37. We distinguish the following two cases. 

CASE 1: d H = l ( H i s a f o r e s t ) .  

Since dH = 1, there exist a 1-degenerate ordering L = v l , . . . , v k  of H .  By 

hypothesis ,  IFI ___ 2 = max{2,  dH}. If  F set = ~ then the L e m m a  is trivial.  If  

F set = {vi}, we consider the new ordering 

L ~ =-  ?]i~ V l ,  • • . ~ v i ,  • • • ,  v k ,  

where J: means  tha t  the element  x is omi t t ed  in the listing of L ' .  Since L is a 

I -degenera te  ordering, it follows tha t  L '  is a 2-degenerate ordering. 

If  F set = {vi, vj }, let L~, and L, j  be the set of vertices in the left ne ighborhood 

ofv~ and vj respect ively in the ordering L. Thus  IL~ULvjI _ 2 and ILv~NL~jl <_ 1 

because L is a 1-degenerate ordering. Moreover,  if IL~ nLv~ I = 1 then  L.~ nLvj  = 

Lv~ U L~ .  This leads to the following possibilities: 

(i) Lv, U L,,  = 0. 

Consider the ordering 

L' = y i , v j , v l , . . . , v i  . . . . .  v j , . . . , v  k .  

Since L = Vl, . . . ,  vk is a 1-degenerate ordering and Lv~ ULv~ = O, it is clear 

tha t  L ~ is a 1-degenerate ordering with F set  = {vi, Vj}. 

(ii) Lv~ N nv~ ~ 0. 
In this case, recall t ha t  Lv~ N L ~  = Lv~ U Lv~ = {vs}. Now consider the 

ordering 

L' = v i ,  v j ,  V s ,  V l ,  . . . , ?~s ,  . . . , ?~i ,  . . . , ?~ j ,  . * . , v k .  

The  ver tex  Vs has 2 left neighbors (vi and vj) in the ordering L I. Further-  

more,  since H is a forest (because du = 1) and any ver tex u ~ {vi, vj, %} 

is joined to a t  mos t  one ver tex in {vi, vj, vs}, the left degree of  u in the 

ordering L '  is at  most  2. Consequently,  L ~ is a 2-degenerate ordering of H 

with F set = { V i ,  V j  } .  

(iii) Lv~ U Lv~ ¢ 0 and Lv, N Lvj = 0. 

Recall t ha t  ILv~ U L~¢I _< 2. Consider the ordering 

L' = v i ,  v j ,  v 1 . . . .  , v i ,  . . . , ? ] j ,  . . . , V k .  
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Thus the left degree of any x E Lv~ t_JLvj changes from dx _< 1 in the ordering 

L to d~ < 2 in the ordering L ~. Furthermore, the left degree of any other 

vertex y ~ Lv~ UL.~ remains unchanged, that  is dy = dy _< 1 in the ordering 

L ~. Thus L ~ is a 2-degenerate ordering of H with F set -- {vi, vj }. 

CASE 2: dH >_ 2. 

By Remark 28, our graph H has a dH-degenerate ordering L. We now observe 

that  if we relocate the vertices in F at the beginning of that  ordering, then we ob- 

tain a DH-degenerate ordering of the vertices of H. To see this, let L ~ = vl . . . .  , vk 

be this ordering. If DH = A(H) ,  then clearly a n y  ordering is a DH-ordering. 

Thus suppose that  DH = 2dH. As in Definition 27, let Hh = H [ { v l , . . . , v h } ]  

(0 < h < k). Due to the assumption l <_ max{2, dH} = dH, the left degree of vh 

with respect to the ordering L ~ is 

d ~ vh = degHh(Vh) <_ l + dH <_ 2dH = DH. 

This proves that  there exists a D(H)-degenerate  ordering L ~ = v l , . . . ,  vk of H 

such that  F = {Vl , . . . ,  ve}. Now our lemma follows from Claim 37. | 

The following notation will be used in the next corollary. Set 

gni(H, G) -- {f  E C(H, G): f is a non-induced embedding}. 

COROLLARY 38: L e t C >  1, k > 1, a n d s > 0  b e / ~ x e d a n d l e t p = p ( n )  = o ( 1 )  

be a function of  n. Then there exists an integer nl  such that, for any graph 

H with k vertices and any graph G G BDD(C,  DH) with ]E(G)I <_ pn ~ and 

n = IV(G)I >_ nl ,  we have 

(14) ]gni(H, G)I < 7lnkp e, 

where and e = IE(H)I.  

Proo£" Let r/, p, H and G be as in the statement of the corollary. The case in 

which k = 1 is clear, hence we suppose k k 2. To count non-induced embeddings 

of H in G, we select an edge {x, y} 6 E(G)  and a pair u, v of distinct, non- 

adjacent vertices of H.  By Lemma 36 applied to F -- (u, v) and X = (x, y), the 

number of embeddings f :  V ( H )  --~ V(G)  such that  f ( u )  = x and f ( v )  = y is at 
m o s t  c k - 2 n k - 2 p  e. 

Since {x, y} 6 E(G)  can be selected in at most pn 2 ways, the ordered pair X 

can be selected in _< 2pn 2 ways. Similarly, F can be selected in _< 2(~) ways. 

Therefore 

,$~i(H,G), __< 4 p n 2 ( : ) C k - 2 n k - 2 p e  < 2kzCt:-2nkp e+l. 
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Since p = o(1) and C, k, and ~t > 0 are constants, there exists an integer nl such 

that  (14) holds for all n _> nt ,  as required. II 

3.2.2 Proof of Lemma 33. This section is devoted to the proof of Lemma 33. 

We start  by introducing some notation and terminology. Let G~ be an n-vertex 

graph with p = e(Gn)(2) -1. For every integer r _> 1 and real e > 0, we let 

Ne ,  r) = {X c [V(G~)]~: ING~(X) - np~l >_ enpr}, 

and 

Bstb(e,r) = {X E B(e,r):  X is a stable set in G~}. 

A set B C_ V(Gn) will be said to be e -bad  if B E ~stb(e, r)  for some r = IBI with 

l <r<dH.  
If Gn satisfies TUPLE~(du) ,  we have 

I B s t b ( e , r ) l _ < ' ~ ( e , r ) l < e ( n )  

for all r <_ dH. 
Let us fix a triangle-fl'ee graph H as in the statement of Lemma 33. We shall 

also fix a dH-degenerate ordering v l , . . . ,  vk of the vertices of H.  As before, we 

let Hh = H[{v>...,vh}] (1 <_ h _< k). The next definition introduces several 

important  terms for our proof. 

Definition 39: For (i) (iii) below, we suppose that. 1 < h _< k. 

(i) An embedding f :  V(Hj~_I) --+ V(G~) is c l ean  if the set f(NHh(Vh)) is not 

e-bad; i.e., f(NHh(Vh)) ~ Bstb(e,r) for any r with 1 < r < dH. Otherwise, 

f is p o l l u t e d .  When we use the terms 'clean' and 'polluted' ,  the value of 

e will be clear from the context. 

(ii) Set 

~'poll(Hh_l , G~) = {f  E g(Hh_l, Gn): f is polluted}. 

(iii) Finally, set 

ind g 
g c l e a n ( h - l , G n )  = {f  E g(Hh-bG,~): f is clean and induced}. 

Now we are ready to state another corollary of the Extension Lemma, Corollary 

40 below. This corollary, along with Corollary 38, will be the key ingredients in 

the proof of Lemma 33. 
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COROLLARY 40: Let e > 0, C > 1, and k >_ 4 be fixed. Suppose 1 < h <_ k and 

set r = degHh(Vh). IfGn E BDD(C, DH) satiMies TUPLE~(dH), then 

]~¢poll(Hh-1, Gn)[ <_ e c h - r - l n h - l p  e(H~-l), 

where p = e(Gn)(~) -1. In particular, for any ~ > 0, C > 1, and k, there is an 

e > 0 that guarantees that  [Epoll(Hh-1,  Gn)] <_ ?]nh-lp e(Hh-1). 

Proo~ By definition, an embedding ] of Hh-1 in Gn is polluted if f(NHh (Vh)) E 
•stb(e, r ) .  F i x  an  r - t u p l e  F such t h a t  F set = NHh (Vh). W e  have 

£po l l (Hh-1 ,  an) --  U E ( H h - I '  Gn, F, X), 
X 

where the union is taken over all r-tuples X such that  X set E Bstb(t[, F). Therefore 

(15) IEp°II(Hh-I'Gn)I <- Z IE(Hh-I'Gn'F'X)['  
x 

where the sum is over the same r-tuples X. Since TUPLE~(dH) holds for Gn 

and r -- degHh (Vh) <_ dH, the number of r-tuples X that  we are summing over 

in (15) is at most en r. Observe also that  N~ h (Vh) is a stable set in Hh, because 

Hh C_ H is triangle-free. We now apply Lemma 36 to deduce from (15) that  

I•poll(Hh-i, Gn)l is at most 

~n r × ch-r--lrth-r-lpe(Hh -1) : ~ch-r-lnh-lpe(Hh-1) 

and our corollary follows. | 

We are now ready to prove Lemma 33. We start  by outlining the idea of the 

proof. 

Proof strategy for Lemma 33: The proof uses an inductive argument. To keep 

the induction step working, we need the Extension Lemma, Lemma 36. This 

lemma yields an upper bound on the number of those "copies" of H in Gn that  

contain a fixed copy of H[F] C H for some F C_ V(H). 

Next, we use Corollary 38 to infer that  most of the copies of H in Gn are 

induced copies. Then we further restrict the domain to a certain class of embed- 

dings, called c l ean  embeddings, and show that  the number of p o l l u t e d  (i.e., not 

clean) embeddings is negligible. This enables us to reduce the proof of Lemma 

33 to the special case when the embeddings of H in Gn are clean and induced. 

Proof of Lemma 33: Throughout this proof, we suppose that  C > 1 is a fixed 
n --1 

constant and that  Gn C BDD(C, DH). We let p = e(an)(~) , and suppose 
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that  np dH ~ np DH >> 1. Recall that  we have a fixed rill-degenerate ordering 

v l , . . . , v k  of the vertices of H,  and that  Hh = H[{vl,...,Vh}] (1 < h < k). 

We shall prove by induction on h that  

(**) for all 1 _< h _~ k and all 5 > 0, there is e > 0 such that  if Gn satisfies 

TUPLE~ (dH), then 

(16) Ig(Hh, Gn)l ~6 nhP e(Hh), 

as long as n is sufficiently large. 

Note that  (16) clearly holds for any 5 > 0 for h = 1. Now suppose that  

1 < h <_ k and that  (16) holds for smaller values of h for all 5 > 0. Let 5 > 0 

be given. We wish to show that  (16) holds if G~ satisfies TUPLE~(dH) for small 

enough e and n is large enough. 

We start  by showing the lower bound, that  is, Ig(Hh, Gn)l > (1 - 5)nhp e(Hh). 
Let 5 / = min{5/4,5/2C}, and let ~/ = e1(51) be the value of ~ given by the 

induction hypothesis to guarantee that  

(17) ]E(Hh-1, Gn)] "'6' I th-lp e(Hh-:), 

as long as n is sufficiently large. Now put ~ = 51/2. Corollary 38 tells us that  if 

n is large enough, then 

(18) Igni(Hh-1, Gn)] _< ~mh-lp e(Hh-l). 

Also, let ~" = e'(tl)  be the value of e whose existence is guaranteed in Corollary 

40 to ensure that  

(19) ISpoll (Hh- l, Gn)] ~__ l]n h- lp e(tfh-1 ). 

We now let e = min{e', c ' ,  5/8}, and claim that  this choice of ¢ will do. 

induction step is reduced to proving this claim. 

For future reference, observe that  we have 

Our 

(20) 

(21) 

( 1  - 2 5 ' ) ( 1  - 2 e )  > 1 - 5 ,  

( 1 +  5 ' ) ( 1 +  e) < 1 + 5/2, 

and 

(22) 5'C < 5/2. 
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Let r = degHh (Vh) < dH. Note that then e(Hh-1) = e(Hh) - r. By our choice 
of e, if n is sufficiently large, then the number of embeddings in g(Hh-1, Gn) that 

are polluted or non-induced is 

< 2~nh-lp e(Hh-1) = ~tnh-lpe(Hh-1) = (~lnh-lpe(Hh)-r 

(see (18) and (19)). Hence, by (17), the number ind ICclean(Hh-l,Gn)l of clean 
induced embeddings of Hh-1 in G~ is such that 

ind (1 q- 5')nh-lp e(Hh)-r. (23) (1 - 2~')nh-lp ~(Hh)-~ < Igdean(Hh_l,an)] < 

Given f '  ind G gclean(Hh-1, Gn), we may estimate from below the number of embed- 
dings f C g(Hh, Gn) that  extend ff  as follows. Since ff  is clean, by definition 

f'(NHh (Vh)) ~ Bstb(e, r). Equivalently, either 

(a) f'(NHh (vh)) is not a stable set in G, or 

(b) INan(NHh(Vh))- nprl < ~ n p  ~ holds. 
Since H is triangle-free, the se t  NHh (Vh) is a stable set in Hh. Since f '  is 

induced, the set ff(NHh(Vh)) is also a stable set and consequently (a) fails to 

hold. Thus (b) must hold, that  is, 

(24) ING,~(NHh(Vh)) - np~'l < enp ~. 

Note that, to obtain an extension f E C(Hh, Gn) of if, we must simply select 

f(vh) in Nc~ (f'(NHh (Vh))) \ f '(V(Hh-1)). Consequently, the number of exten- 
sions of ff  to embeddings of Hh in Gn is at least 

(25) INcn(f'(NHh(Vh))) \ f ' (V(nh-1)) l  ~ ( 1 - e ) n p  ~ -  (h-1)_> ( 1 -  2e)np ~', 

where we used (24), the fact that  np r >_ np dH >> 1, and that  n is large. Combining 

(20), the lower bound in (23), and (25), we obtain that 

(26) ]E(Hh, Gn)l > (1 - 25')nh-lpe(Hh)-*'(1 -- 2e)np r >_ (1 -- 5)nhp e(Hh). 

Now we need to show that f (Hh,  Gn)l < (l+5)nhp e(Hh). Fix f '  C [ (Hh-1,  Gn). 
The number of extensions of ff  to embeddings of Hh in Gn is bounded from above 

by 

(27) INca (f'(NHh (Vh)))l. 

.¢'ind If, furthermore, f '  E ~.clean(Hh-1,  Gn), then we know that (24) holds and hence 
the quantity in (27) is < (1 +e)np r. Combining this fact with the upper bound in 



Vol. 139, 2 0 0 4  EMBEDDING GRAPHS WITH BOUNDED DEGREE 119 

(23) and recalling (21), we obtain that the number of embeddings f E £(Hh, G,~) 
whose restrictions to V(Hh-1) are in ¢'ind [ ~  G n )  is ~clean ~11 h -  1, 

< (1 + 5')nh-lpe(Hh)-r(1 + e)np ~ ----(1 + (f')(1 + e)nhp e(Hh) 
(28) 

<_(l + ~)nhp ¢(Hh). 

We already know that Ig'(Hh_l, G~) ind _ 61nh--lp¢(Hh)--~ \•clean(Hh_l, G~)[ < . Since 
r = degan(Vh ) <_ dH <_ DH and Gn E BDD(C, DH), each such embedding 

ff  gives rise to _< Cpn ~ embeddings f c £(Hh, Gn). Therefore, the num- 

ber of embeddings f C £(Hh, G~) whose restrictions to V(Hh-1) are not in 
ind gclean(Hh-1, Gn) is, by (22), 

(29) <_ (~lnh-lpe(Hh)-r × Cap r <_ (~2nhP e(Hh). 

From (28) and (29), we deduce that 

(30) I£(Hh, G~)I < (1 +5)nhp ~(Hh). 

Inequalities (26) and (30) complete our induction step, and hence (**) follows by 

induction. Lemma 33 follows on taking h : k in (**). 1 

3.2.3 Proof of Theorem 16. In this short section, we observe that we have al- 
oo ready done all the work to prove Theorem 16. Indeed, let H and {Gn}n=l be as 

in the statement of Theorem 16. We first observe that we may boost hypothesis 

(iii) in the statement of that theorem to TUPLE(dH),  by applying Lemma 32. 

But then we are in condition to apply Lemma 33. We leave the details to the 

reader. 

3.3 REMARKS ABOUT THEOREM 26 (THE DIRECTED CASE). We omit the 

proof of Theorem 26 (stated in Section 2.2) and make a few remarks about its 

connection to the undirected case. 

Theorem 26 is the directed version of the Embedding Lemma (Theorem 16). 

Its proof goes along the lines of the the proof of the Embedding Lemma. That  

is, it uses the directed versions of the Extension Lemma (Lemma 36), Lemma 32, 

Lemma 33 and Corollary 38. However, the proofs of the directed versions of the 

Extension Lemma, Lemma 33 and Corollary 38 are very similar to the proofs for 

the undirected case. Thus we omit those proofs. 

We shall rather state and prove Lemma 41, which is the directed analogue of 

Lemma 32. Then at the end of this section we briefly say how to deduce Lemma 

32 from Lemma 41. 
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We follow the same notation as in the beginning of Section 2.2. Let G = 

(V, E) be a digraph, 7r = (~'1,..., 7r,.) E { + , - i f ,  and (ul . . . .  , u~) E V r. We let 
dTr (Ul , . . . ,  Ur) = IN~(Ul,. . . ,  u,,)l, where 

N~(ul , . . . ,u~)  = {w E V: Vi E [r], (ui, w) E /~ if:r/ = + 
(31) 

and (w, u~) e / ~  if 7ri = - } .  

LEMMA 41: Let t >_ 2 be an integer and let 0 = (V,/~) be a digraph on n vertices 
satisfying the following conditions: 

(a) for all but o(n) vertices u E V, 

(b) 

d+(u) = ~pn(1 + o(1)), 

E (d++(u'v))2=n2(p2?-) 2(1+°(1))" 
(u,v)EV 2 

If p = p(n) >> n -lIt  and d E BD---~(C, 2), then, [or ali 2 <_ r <_ t, for all 
rr E {+, _}r,  and for all but o(n r) r-tuples (ub . . . ,  ur) E V", we have 

d~(Ul,. . . ,ur) = l p r n ( 1  + o(1)). 

Proof'. First we show that 
(c) for all but o(n) vertices u E V, we have 

d-(u) = 1 -~pn(1 + o(1)). 

To that end, we first observe that 

(32) E d-(a) = E d+(u)" 
aEV u E V  

Condition (a) above and the fact that all vertices have degree < Cpn imply that 

(33) E d+(u) = n ( ~ ) ( 1  + o ( 1 ) ) + o ( n ) C p n  = n ( ~ ) ( 1  + o(1)). 
u E V  

Moreover, by the Cauchy Schwarz inequality and (b) above, we have 

= - E d++(u'v)2}l/2 E d++(u,v)<n{ 
(34) aeu (~,v)cU: (u,v)cu 2 

< n ( ~ ) 2 ( 1  + o(1)). 
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Lemma 29 and (32), (33), and (34) now imply that (c) above does indeed hold. 

We may deduce from (c) that 

n 2 (p2n'~ (1 + 0(1)). (3~) Z d++( u,v)= F_,a-(") 2 >- ~-TJ 
(u,v)EV 2 a E V  

Lemma 29, condition (b) and (35) now imply that 

(d) for all but o(n 2) pairs (u, v) E V 2, we have 

d++(u, v) = ~p2n(1 + o(1)). 

Similarly, we may deduce that 
(e) for all but o(n 2) pairs (u, v) E V 2, we have 

d--(u,v) = ~p2n(1 + o(1)). 

Indeed, this is a consequence of Lemma 29 and the identities 

( u , v ) E V  2 a E V  

and 

E d--(u'v)2= E d++(a'b)2" 
( u , v ) E V  2 ( a , b ) E V  2 

Having established the auxiliary facts (c)-(e), we are now in position to verify 
Lemma 41. For ¢r = (7rl . . . . .  Irr) E { + , - } r ,  let P(rr) = I{i: ¢r~ = +}1 and 

Q(Tr) = r - P~. We write u = (Ul . . . . .  u,.) for a general element in V r. We have 

(36) Z d'(u) = E d-(a)P(')d+(a) q(~)" 
uEV*" a E V  

Condition (a) and property (c) deduced above and the fact that all vertices 
have degree < Cpn allow us to conclude that the right-hand side of (36) is 
~,, n(pn/2) r =,-~ nr(prn/2r), so that 

(37) E d ' ( u ) =  n r ( l p r n )  (1 + o(1)). 
uEV" 

We now observe that 

(38) E d ' ( u ) 2 =  E (d--(a'b))P(~r)(d++(a'b))Q(')" 
u E V "  ( a , b ) E V  ~ 
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Properties (d) and (e) deduced above and the fact that  all pairs of vertices have 

joint degree < Cp2n allow us to conclude that the right-hand side of (38) is 
n2(p2n/4)~ =~ n~ (p~n/2~)2, so that 

(39) Z d ~ ( u ) 2 = n r ( l p ~ n )  2(1 + o(1)). 
uEV ~ 

Finally, Lemma 29 and (37) and (39) imply that for all but o(n ~) r-tuples u • V ~, 

we have 
1 7. 

d ' (u )  = ~ p  n(1 + o(1)), 

which concludes the proof of Lemma 41. | 

Now we present a sketch of the proof of Lemma 32 (introduced in Section 3), 

based on Lemma 41. We start by restating Lemma 32 in the following equivalent 

f o r m .  

LEMMA 42: Suppose t > 2 and C > 1 are constants and p -- p(n) satisfies 

G np t >7 1. Let { n}n=l be a sequence of graphs with Gn C BDD(C, 2) for all n 

and IE(Gn)I = (1 + o(1))P(2). I f  
(a) for all but o(n) vertices u • V(Gn), 

degc,.(u) = pn(1 + o(1)), 

(b) for all but at most o(n 2) pairs {Xl, x2} C_ V(Gn), 

ING.(xl) n Nco (x~)l = p2n(1 + o(1)), 

then, for all r • It], all but at most o(n ~) r-element sets {x l , . . .  ,xr} C_ V(Gn) 
are such that 

INc~ (xl) n - . .  n Na~ (x~)l = p"n(1 + o(1)). 

Sketch of the proof of Lemma 42: Lemma 42 follows from Lemma 41. Suppose 

we are given a graph Gn as above; we then randomly orient its edges to get Gn. 

One can easily show that the hypothesis of Lemma 41 holds almost surely for 

Gn, that is, with probability tending to 1 as n --+ oc. Finally, note that if Gn 

satisfies the conclusion of Lemma 41, then G,, satisfies the conclusion of Lemma 

42. | 

3.4 PROOF OF THEOREM 24. Throughout this section, H will be a (not neces- 

sarily triangle-free) graph on k vertices and e edges. Recall that we denote the set 

of embeddings of H in a graph G by E(H, G). The set of i nduced  embeddings of 
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H in G will be denoted by gind(H, G), and the set of n o n - i n d u c e d  embeddings 

of H in G will be denoted by Eni(H, G). 

To prove Theorem 24, we need to prove the implications 

NSUB(k + 1) ~ INDTUP(k - 1) 

and 

INDTUP(k - 1) =~ NSUB(k), 

for all appropriate sequences of graphs {Gn}n°°=l . The implications above will be 

proved in Lemmas 43 and 45 below. 

LEMMA 43: Let k > 3 and C > 1 be fixed. Let p = p(n) = o(1) be a function of 
n satisfying np k-1 >> 1. Then 

NSUB(k + 1) =~ INDTUP(k - 1) 

for any  sequence  o f  gralDh8 {GnIn°~=l wi th  p ~- p (n )  ~- e ( a n ) ( 2 )  -1  and G n e 

BDD(C, k - 1) for all n. 

Prooi~ We shall be somewhat sketchy in this proof. Let the sequence of graphs 

{Gn}nC~=l be as in the statement of our lemma. Suppose that INDTUP(k - 1) 

fails to hold. We will show that NSUB(k + 1) fails to hold as well. By definition 

of INDTUP(k - 1), we know that there are integers 1 < r < k and 0 < t < (;) 

for which we have 

(40) I Badind(r, t)l ¢ o(n"pt), 

where 

Badind(r,t) = {X C_ V(G~): IXl = r , c ( x )  = t, and IN(X)  - n p  r] ¢ o(np")}. 

Given a graph F with r vertices and t edges, let g(F, Gn; Badind(r, t)) be the set 

of induced embeddings f of F in G,~ with the image f ( V ( F ) )  of f in the family 
Badind(r,  t). Formally, 

$(F, Gn;Badind(r,t)) = {f  e gind(F,G~): f ( V ( F ) )  C Badi 'd(r , t)}.  

Observe that there are at most ((i)) graphs on r vertices and t edges that can be 

induced on X C Badlnd(r, t). Hence we deduce from (40) that there is a graph F 

with r vertices and t edges such that 

(41) [g(F, Gn; Badi~d (r, t))l ¢ o(n~pt). 
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Unwinding the definitions, we see that (41) means that the number of induced 

embeddings f of F in G~ failing to satisfy 

I N ( f ( V ( F ) ) ) I  ~ n p  r 

fails to be o(nrpt). 
Suppose now that the vertices of F are ul . . . .  , u~. Let U~+l and ur+2 be two 

new vertices. We let F1 be the graph obtained from F by adding ur+l to F and 

joining it to all vertices in F.  Moreover, we let F2 be the graph obtained from 

F1 by adding ur+2 to F1 and joining it to all vertices in F.  Note that U~+l and 

ur+2 are not adjacent in F2. Finally, we let F3 be obtained from F2 by adding 

the edge {U~+l, u~+~}. For convenience, put Fo = F.  

In Claim 44 below, we prove that  

IEind(Fi, Gn)[ 75 nlV(F~)lp [E(Fi)l, 

for some i, 0 < i < 3. Consequently NSUB(k + 1) fails, which is a contradiction. 

This contradiction proves Lemma 43. II 

CLAIM 44: For some i, 0 < i < 3, we have 

[~ind(Fi, Gn)] 75 nW(FD}p IE(F~)I. 

Proo~ Assume for a contradiction that the number of embeddings of Fi in G~ 
(0 < i < 3) is ,,~ nlV(F')lp IE(F~)I. We will show that 

IE(F, G~; Badind(r, t))] = o(nrpt), 

which would contradict (41). 

Since p = o(1), we may deduce from Corollary 38 that the number of induced 
embeddings [cind(Fi, Gn)[ of Fi in Gn satisfies 

(42) IEi"d(F~, Vn)l ~ nlV(F, ) lp lZ(F , ) l ,  

for all 0 < i < 3. 

For each induced embedding ] of F to G , ,  put 

d(f) = ]N(f(V(F)))[; 

that is, d(f) is the number of joint neighbors of the vertices in the image of f .  

Clearly, we have 

(43) It?ind(rl, Gn)l = ~-~Ad(f): f • ci"d(F, Gn)}. 
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Moreover, by (42) and the fact. that p = o(1), we have that 

IEh~d(F.2, G,,)t ,'-~lEind(F2, Gn)I + IEind(F3, G,,)l 

(44) = Z { d ( f ) ( d ( f )  - 1): f C / i "d (v ,  G,,)}. 

Note that (42) and (43) imply that 

(45) Z { d ( f ) :  f E gi"d(F,G,)}  ~ n"+lp t+" ~ [gi"d(F, Gn)lnp". 

Since rip" >_ 'l~p k - 1  >> 1, we may deduce ti'om (45) that 

(46) Z d ( f )  2 _> [,Cind(F,G,,) I Z d ( f )  >> Z d ( f ) ,  
f f f 

where all the sums above are over f C gind(F, G,,). Combining (42), (44), and 

(46), we deduce that 

(47) Z { d ( f ) 2 :  f e gind(r, G,,)} ~ n"+'2p t+'2"~ Igind(F, G,,)l(np") 2. 

In view of (45) and (47), we may now simply apply Lemma 29 to deduce that 

el( l)  = I X ( l O ~ ( V ) ) ) l  ~ "V" 

fox' (1 - o ( 1 ) ) [ g i " d ( F ,  G,,)[ ,-~ n"p t embeddings f c gind(F, G,,). This means that 

Ig(F, G,,; Badind(r. t))] = o(nrpt). 

However, as observed above, this contradicts (41). Thus the claim holds. II 

We now 1)rove the implication 

I N D T U P ( k -  1) ~ NSUB(k), 

for all appropriate sequences of graphs {G,~,}~,~=t. We in fact give a more precise 
assertion in Lemma 45 below. 

LEMMA 45: Let 5 > 0, C > 1 and k >>_ 3 be fixed. Let H be a (not necessarily 

trianglo-ti'ee) graph on k vortices, and let p = p(n) = o(1) be a fimction of n 

satisfying ~pD, >> 1. Then there exist e > 0 and an integer T/, 3 for which the 

following holds. I f  a sequence of graphs {G,, },,00= 1 is such that, for all ~7, 

(i) G,, • B D D ( C ,  D H ) .  

(ii) p = p (n )  = e(G, , ) (~)  -1 

(iii) INDTUPe(dH) holds for G,~, 
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then the number of embedding of H in G.  is 

N(H,  G,,,) "~a nkP ~ 

for all n >_ n3, where e = tE(H)I. 

Proof: The proof of this lemma is very sinfilar to the proof of Lemma 33, and 

hence we shall only sketch an informal proof. 

We shall assume throughout that  C > 1 and k >_ 3 are fixed constants and that  
0 ~  G ,  E BDD(C, DH) for all n, where {G~}n=l is as in the statement of our lemma. 

Let us also fix a graph H as in the statement of our lemma. As in the proof of 

Lemma 33, we shall also fix a rill-degenerate ordering Vl , . . . ,  vk of the vertices 

of H. As before, if 1 _< h _< k, we shall write Ha for the graph H[{Vl . . . . .  Vh)] 

induced by {v l , . . . ,  vh} in H. 

We shall prove by induction on h that 

(~) for all 1 < h < k, if property INDTUP(dt4) holds for {G~}~__I, then 

(48) I~'(H~, Gn)l ~ nhp ~(Hh). 

Note that (t) is trivially true for h : 1. Now suppose that 1 < h _< k and that 

(t) holds for smaller values of h. We need to show that (48) holds assuming that 

INDTUP(dH) holds. 

By Corollary 38, we know that 

(49) t£ni(gh-1, Gn)l = o(IJZ-Ipe(H~-I)) • 

From the induction hypothesis and (49), we may deduce that 

(50) ~'i'~d/H G ~',-~ ) k h - l ,  n)[ r t h - l p  e(Hh-1 • 

We now need to introduce some notation. Let r = degHh(Vh ), and suppose 

that the neighborhood NHh (Vh) of Vh in Hh induces t edges in Hh. Clearly, 

NHh(Vh) induces t edges in Hh-1 as well. As in the proof of Lemma 43, we put 

Badind(r,t) = {X c V(G,~): IX[ = r ,e (X)  = t, and IN(X)  - np"] # o(np")}. 

In words, Badind(r, t) is the family of the r-element sets of vertices of Gn that 

induce t edges in Gn and fail to have a joint neighborhood of cardinality ~,, np". 

Since r = degHh (Vh) _< dH and we are assuming that INDTUP(dH) holds, we 

have 

(51) I Badind(r, t)l = o(nrpt). 
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We now let 

,3 ( g h -  l, Gn; Bad ind (r, t)) = {f  E gind (gt~- i, G~, ): f (Ngh (Vh)) E Bad ind (r, t) }. 

We will need the following claim, Claim 46. We delay its proof until the end of 

this section. 

CLAIM 46: We have 

(52) Ig(Hh-1, Gn; Badind(r, t))] = o(nh-lpe(Hh-~)). 

Assuming Claim 46, we proceed with the proof of Lemma 45. 

If f is an embedding of Hh-1 in G,~, let us write d(f) for the number of 

extensions of f to embeddings of Hh in Gn. Note that  

($) if 

(53) f E ~'ind(Sh-1, Gn) \ ~(Hh-1,  an ;  Badind (r, t)), 

then 

(54) d(f) ~ np r. 

Observation ($), relation (50), and Claim 46 imply that 

(55) I$(Hh, an)l >~ rth-lp e(Hh-1) X rip r =- nhp e(Hh). 

We now need to estimate IE(Hh, Gn)I fronl above. Note that any embedding 
f of Hh-1 in Gn extends to _< Cnp" embeddings of Hh in Gn, because we are 
assuming that Gn E BDD(C, DH) and r = degHh (vh) _< dH <_ DH. In particular, 

if 

(56) f E g"i(Hh-1, G,  ) U g (Hh- i ,  G,~; Badind(r, t)), 

then d(f) <_ Cap r. Inequality (49) and Claim 46 imply that the number of 

embeddings f as in (56) is o(nh-tpe(Hh-1)). It follows that the number of era- 

beddings of Hh in Gn that extend embeddings f as in (56) is o(nhpe(Hh)). 
Finally, we observe that if an embedding f E E(Hh-1, Gn) is not as in (56), then 

it must be as in (53). Recalling (:~), we see that the total number of embeddings 

of Hh in G,, is ,- nhp e(Hh). The proof of the induction step is therefore complete, 

and hence (f) follows by induction. Naturally, Lemma 45 follows by setting h = k 

in (~[). | 
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Now we present the proof of Claim 46, which is a slight extension of the proof 

of Corollary 40. 

Proof of Claim 46: By definition 

g(Hh-l, G,,; Badind(r. t)) = {f  E g.ind(Hh_l, G .  ): f(NHh (vh)) E Badind (r, t)}. 

Fix an r-tuple F such that F set = NHh (v/,). By the above definition and the fact, 

that  G,, satisfies INDTUP(k - 1), we have 

(5]') I ~ C ( H h - l ' G n ; B a d i n d ( r ' t ) ) [  = E Ig(Hh-I'G"'F'X)I' 
x 

where the sum is over all r-tuples X such that X sot E Badind(r, t). By (51), the 

number of r-tuples X that we are summing over in (57) is at most 

'r! × o(It" p t) ---- O(llr p t ) .  

For each r-tuple X. we apply the Extension Lemma (Lemma 36) to 

g(Hh_I,G.,F.X) 

and deduce from (57) that 

[g(Hh-1, G .  ; Badind(r. t)) I <o(l~" p t) x C(t'-l)-" ~t(h-l)-" p ~(H'-~ )-~ 
(58) =o(. h-~p~(M~_, )). 

This concludes the proof of Claim 46. | 

4. Auxi l iary facts and related work 

4.1 GENERAL FACTS. V~re have used Facts 47 and 48 given below. Recall that, 

for two graphs X and Y, the set of all enlbeddings of X in 1" is denoted by 

E(x,Y). 

FACT 47: 

we have 

Let k > 1 be a fixed integer. For any sequence of graphs {G,},~=1, 

NSUB(k + 1) ~ NSUB(k). 

: • Proof'. Suppose {G. }.=1 satisfies NSUB(k+I)  and let p p(~Q = ,~ -1 

To prove this fact, we have to show that, for any graph H oil k vertices, we have 

(59) Ig(H. G.)l  = (1 + o(1)),~h'p C, 
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where e = ]E(H)[. Given a graph H as above we construct H + where V(H +) = 

V(H) U {u} and E(H +) = E(H). By definition of H +, it follows that 

(60) IE(H +, G,~)I : N(H, G,~)(n- k). 

By hypothesis, we know that {G,~}n°e__ 1 satisfies NSUB(k + 1). Thus 

(61) ]g(H +, G,~)] = (1 + o(1))nk+lpC 

Combining (60) and (61), we obtain (59). | 

Similarly, we may prove the following simple fact. 

FACT 48: Let k _> 1 be a fixed integer. For any sequence of graphs {G,}~=I, 

we h a v e  

TFSUB(k + 1) ~ TFSUB(k).  

4.2 PROOF OF P R O P O S I T I O N  6. In this section, we shall sketch the proof of 

Proposition 6(A) and we shall prove Proposition 6(B) using a construction due 

to Alon [3]. 

Proof of Proposition 6(A): We only outline the proof of Proposition 6(A), be- 

cause a similar result is proved in [14] (see Theorem B' in [14]). The graphs Gi 

satisfying properties (i) mM (ii) above can be constructed fronl sparse random 

graphs whose triangles have been destroyed by the removal of a small fraction 

of the edges. Beplacing each vertex of such a triangle-fl'ee "random like graph" 

by a stable set of appropriate cardinality and each edge by a colnplete bipartite 

graph yields suitable graphs Gi. | 

The proof of Proposition 6(B) is based on a family of graphs constructed by 

Alon [3]. 

C O N S T R U C T I O N  OF ALON'S GRAPH. Let k > 1 be an integer not divisible by 

3 and let F~, = GF(2 k) be the Galois field with 2 k elements. Depending on the 

context, we will think of the elements of F~: as polynomials over GF(2) or as 

binary vectors of length k (whose entries are the coefficients of the corresponding 

polynomial representations). If u and v are two vectors, we will denote their 

concatenation by u. o v. 

For any a E Fk - {0}, we put the vector a in W0 if the constant term of the 

polynomial o 7 is 0. Otherwise we lint o in ~lrl . Let. F = ( Z j  3k be the Abelian 

group with elements the binary vectors of length 3k. Let. 

~-ff0 = {UJ0 0 '(,/13 0 W 5" t.,, 0 • ~{ , ; }  all(1 g 1 = {W l 0 ',t'~ 0 'W~" ?.U 1 E ~'~'rl } 
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be subsets of F. Note that 

IUo[ = IWol = 2 - 1 and lUll : I W l l  : 2 k-1 .  

In the following, we will use bold letters to denote vectors of length 3k to 

distinguish them from vectors of length k. 

The Alon graph G = G(P) is defined to be the Cayley graph on F with 

generating set 

S - ~  go-{- Vl ---- {Uo'J-Ul:  UO E Uo, Ul E U1} C_ F. 

In other words V(G) = F = (Z2) 3~' and x, y E V(G) form an edge in G if and 

only if x + y E S. Let M0 (resp. M1) be the 3k × (2 k-1 - 1) (resp. 3k x 2 k- l )  

matrix whose columns are the vectors in U0 (resp. U1). Consider the matrix 

M = [M0, Mi]. It turns out that. M is the parity check matrix of a BCH code of 

designed distance 7. Alon showed that  the graph G has the following properties: 

(a) G is triangle-free, 

(b) G is d = ISI = 2k-l(2k-1 -- 1)-regular, 

(c) The second largest eigenvalue of the adjacency matrix of G has size < 

9 . 2  k + 3 . 3  k/2 + 1/4 = O(2k). 

Roughly speaking, properties (a) and (b) follow from the fact any 6 colunms in 

,~I are lilmarly independent over GF(2). Property (c) is much more delicate, and 

depends on the Carlitz-Uchiyama bound for the Hanmfing weight of dual code 

words of BCH codes. We refer the reader to Alon [3] tbr details. 

Proof of Proposition 6(13): From the above discussion, it follows that for each 

k > 1 not divisible by 3, we have an Alon graph G with the properties (a), (b) 
• OO and (c) listed above. Let {G,}i=I be the family of all such graphs G (ordered 

according to IV(Gi)I). 
We prove Proposition 6(B) by showing that the family {Gi}i~=l satisfies (i), 

(ii), and (iii) of Proposition 6(B). 

Observe that  (i) of Proposition 6(B) is simply (a) above. Next we prove (ii) 

of Proposition 6(B). For each Gi, we have (by definition) n = tV(Gi)I = 2 3k and 

d = pn = 2k-1(2 k-I  - 1). Thus, letting k -+ oo yields 

(62) p = ( 4  +o(1))n-1/3. 

Let A = (ax,y)x,yeV(Gi) denote the 0-1 adjacency matrix of the graph G i, with 

1 denoting edges. Let Aj (1 _< j <_ n = 23k) be the eigenvalues of A and adjust 
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the notation so that/~1 k 1"~21 k " ' "  ~_ IA l It follows fronl properties (b) and 
(c) above that 

(63) /~1 = d = 2/"-1(2 ~'-1 - 1) and 1~21 = 0(2~) .  

a cx~ Hence { i}i=1 satisfies EIG. By Fact 3 in [8], we have EIG ~ DISC. Conse- 
OO quently {Gi}~=l satisfies DISC as well. Now it remains to show that {G~}i=~ 

satisfies property TUPLE(2).  Assume for a moment that {Gi}i~=l satisfies prop- 

erty EIG(4), defined as follows: 

EIG(4): E~__I [)~il 4 ---- (1 + O(1))p4774. 

Then, by Fact 7 in [8], {G~}~=~ must also satisfy CIRCUIT(4), which is defined 
as follows: 

CIRCUIT(4): The number of labeled circuits of length 4 is (1 + o(1))p4~ 4. 

This leads to the following fact. 

FACT 49: EIG(4) ~ TUPLE(2) for the graph sequence {(;i}i~l. 

Proof: Recall that EIG(4) ~ CIRCUIT(4) for the graph sequence {Gi}i~t 
(Fact 7 in [8]). Thus, we nmy assume that CIRCUIT(4) holds for {Gi}}~,. For 
n = IV(Gi)I, then as seen above, deg(v) = pn for all v E I (Gi ) .  

Let #{Cir(4) C Gi} be the nmnber of labeled circuits of length 4 and 
#{Cyc(4)  C_ Gi} the munber of labeled cycles of length 4 in Gi. Denote by 

Wd the nmnber of d e g e n e r a t e  labeled circuits of length 4 in Gi, i.e., labeled 
closed walks using exactly 3 or exactly 2 distinct vertices. Observe that 

(64) #{Cir(4) c G~} = #{Cyc(4) C_ Gi} + Wd. 

Note that the degenerate labeled circuits of length 4 correspond to paths of length 
2 and edges. Hence, since np 2 >> 1, we have 
(65) 

Wd= E ( 4 - ( d e g ( v ) ) + d e g ( v ) ) = 4 n . ( 2  n) +n.pn<2n3p2=oO~4p4,. 
vEV(GJ 

• o o  Since CIRCUIT(4) holds for {G,}~=I, we have 

(66) #{Cir(4) C Gi} = (1 + o(1))n4p 4. 

Thus, (64), (65) and (66)imply 

(67) #{Cyc(4)  C_ a~} = #{Cir(4) C_ a~} - Wd = (1 + o(1))n4p 4. 
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Hence, {ai}i°*=l satisfies CYCLE(4). Finally, by Fact 31 in Section 3.2, we have 

G CYCLE(4) ~ TUPLE(2).  Thus, { ~}i=~ satisfies TUPLE(2) and Fact. 49 is 

proved. 1 

By Fact 49 above, it. follows that, in order to show that {Gi}i~=l satisfies 

TUPLE(2),  it is enough to show that {G,}~=~ satisfies EIG(4). 

By (63), there exists a constant C such that 

(68) 

and 

(69) 

A 4 = d 4 : p4.114 

~!~ IAi[4 < , l~(c2k) 4 : C423k . 24k = o(p4~14), 
i=2 

where in (69) we used that p4?t4 : 28/'. By (68) and (69), our graph sequence 
• OO {G,}i=l satisfies property EIG(4). This concludes the proof of (ii) of Proposition 

6(B). 

To complete our proof of Proposition 6(B), it remains to show that the graphs 

Gi satisfy (iii). Since this will take some work, we state this fact as a separate 

lemma (see Lemma 50 below). 1 

LEMMA 50:  C,i G BDD(128, 2) for all i k 1. 

We will use the following simple fact in the proof of Lemma 50. 

FACT 51: Suppose ai and a2 E Fk with c,.1 # 0 are given, and consider the 

system of equations 

[ x + y = al, (60) .r3 nu y3 = a2.  

System (70) has at most two pairs of solutions in Fk, namely (x, y) = (ct,/3) and 

(x, y) = (/3, a) tbr some a and/3 G F~, with/3 = ct + a l ¢  ca.. 

Proof: By substituting x + al for y in the second equation of (70), we obtain the 

quadratic equation a.lx2+ a~x +a~ + a2 = 0, which has at. most two solutions. If ct 

is a solution to the latter equation, then so is ,'~ = a + aq, as a simple calculation 

shows. This implies that the solutions to (70) are as claimed. | 

Proof of Lemma 50: Since (by definition) Gi is d-regular, where d = p m  we 

have degG~ (x) = pt~ for all x C V(G~). Thus, it. remains to show that for any two 

vertices x ¢; y in V(G.i), we have 

[NG,(x) A Nc;~(y)l _ 128p2'n. 
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For x # y E V(Gi), the ver tex t E V(Gi) belongs to N ( x )  fl N ( y )  if and only 

if there exist s ,  s'  • S such tha t  x + t = s a n d  y + t = sq or, equivalently, 

x + y = s + #.  Consequently,  

INc~ (x) VI Nc;~ (y)[ = [{(s, s ')  • S x S: s + s '  = x + y}[. 

Set a = x + y = a l  o a~  o aa where aq, a2, and a3 are in F~,. Let 

s = ( w o + w l ) o ( u , ~ + w  3 ) o ( u , ~ + w ~ )  and s ' = ( V o + V l ) o ( v  3 + v  3) o ( v ~ + v ~ )  

where Vo, Wo • Wo and vl,  Wl • WL. Thus  the equat ion x + y = s + s '  can be 

wri t ten  as 

WO ~- 1('i -It-l~O JI-"01 = a l ,  

(71) w a + ,v~ + v~ + v a = aa, 
~ 5 W 5 H-t*'~' + 't'~ -4-I'1 = a3" 

For any f • Ft,, let 

We define 

) 
(72) P = {(~T'o + ~ ,  go + ~ ): Wo, Vo E I Io  and u,1, t'l E IVl satisfy (71)}. 

Observe tha t  

ING~(X) Cl Nch (Y)l = I { ( s , s ' ) •  S x S: s + s ' =  x + Y}I = IPI. 

For each Zo • ll,~, set 

P ( : o )  : {(tu0 Ji- / l ' l ,  U0 ~-I~l) • P :  it, 0 ~- :0}-  

S i n c e  any 6 columns of M are linearly independent ,  a momen t ' s  thought  shows 

tha t  the sets P(zo) (zo • ll 'o) are pairwise disjoint. Therefore 

(7S) [Arc;,(x) VIAb,(Y)I = IPI = ~ IP(:o)l. 
zo C IVo 

Let 

(7,1) T = {Zo E ~I~: ]P(zo)l > 2}. 

We now s ta te  a claim tha t  will be used to finish the proof  of Lennna  50. 
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CLAIM 52: With the same notation as above, the following holds. 
(1) IP(zo)l < IW,[ = 2 k - '  for an Zo e Wo. 

(2) [T] _< 2. 

The proof of Claim 52 is postponed to the end of Section 4.2. Now we are 

ready to finish the proof of Lemma 50. By (73) and Claim 52, we have 

IP] = ~ I P(z°)l = ~ [P(z°)[ + E I P(z°)l 
zoEWo zoET zoEWo\T 

_<IT]. 2 k-1 -[- IWol" 2 _< 2 . 2  k-1 + (2 *~-' - 1) .  2 < 4 - 2  k-1. 

Now, it follows from (73) that 

INc. (x) n Nc,(y)[  = IP[ < 4 . 2  t : - '  < 128p2n, 

because, as a quick calculation shows, p2n = 2 k - 4 ( 1  -- 1 / 2 k - l )  2 k 2k -6 .  This 

concludes tile proof of Lemma 50, aSSUlning Claim 52. I 

It remains to prove Claim 52. 

Proof of  Claim 52: We shall first prove (1) of Claim 52. Let Zo e Wo. I f  IP(zo)l _< 

1 then we are done. Otherwise there exist at least two pairs (~o + 'w~, ,' ~0 + v~), 
( ~  + u,~ ~, V~o t + vi' ) E P(zo). From the definition of P(zo) C_ P and (71), it. follows 

that  

(75) ,wl + 4 + ~-'i = wi' + vg + ~i'- 

Since any 6 columns of the matrix ]II are linearly independent (see Alon [3]), each 
, ! , I I  element in {w 1, w,,v~o,V~o~, #l,V~ ~} must occur an even number of times. Since 

Wo N W, O, {v~,v~ ~} c_ Wo and {v~, " ' : V 1 , . _ w  1, w~'} C Bq, we have v~ = V~o q In 

other words, if zo is fixed then i7o = Vo(Zo) is uniquely determined for all pairs 

(Yo + ~-511, iTo + ~71) • P(zo). By the definition of P(zo) C_ P, we have 

(76) zo + w~'~ + Vo(Zo) + ,71 = a2 • 
a3 

We distinguish the following two cases. 

CASE 1: ~ + Vo(Zo) = a2 • 
a3 

In this case, equation (76) implies that Wl = Vs. Hence the elements of P(zo) 

are of the form (zo + wl, v0 (Zo) + w11) where Wl • WI is arbitrary. Thus [P(zo)l _< 

[WI[ = 2 k-1. Hence (1) of Claim 52 holds in this case. 
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CASE2: ~ o + v o ( z o ) ¢  a2 
a3 

Set 

(77) 

135 

' 2, and + = a~. Observe Then (76) implies that Wl +'vl  = a l ,  w 3 + v 3 = a'  w 5 v 5 

that these equations and (77) imply that a~ ¢ 0 (indeed, otherwise Wl = vl, and 

we would have a~ = a~ = a~ = 0, which contradicts (77)). Now Fact 51 implies 

' and w~ + v 3 = a~ are satisfied by at most two that the equations Wl + vl -- al 

pairs (wl,vl) .  Hence IP(zo)]  < 2 < 2 k- l ,  and (1) of Claim 52 is proven. 

Now we shall prove (2) of Claim 52. If Zo C T then I P ( z o ) l  > 2 and it follows 

fl'om the above discussion that for any (~o + ~711, ,70 + '~) E P ( z o ) ,  we have 

Vo = Vo(Zo) and 'w-~l = tYl. This observation combined with (76) implies that 

Zo + v0(zo) = al # 0 and z~ + (v0(zo)) 3 = (12. Then Fact 51 implies that these 

two equations have at most two solution pairs (z0, Vo(zo)). Thus IT] <_ 2, proving 

(2) of Claim 52. | 

5. Concluding remarks 

The study of quasi-random properties in a r a n d o m  setting was considered in, 

e.g., [14]. Proposition 6 tells us that the implications "DISC ~ NSUB(3)", 

"TUPLE(2) ~ NSUB(3)" and "EIG ~ NSUB(3)" fail to be true when p = o(1). 

However, counterexamples demonstrating this proposition are rare and "do not 

occur in random graphs". 

In a subsequent paper, we plan to address the question of extending the Chung- 

Graham Wilson theorem (Theorem 1) to "subgraphs of random graphs" i fp  --+ 0 

sufficiently slowly. 

Another direction for future work is the application of the Embedding Lemma 

(Theorem 16) to extrelnal problems for subgraphs of random graphs (including 

Tur in  type problems). For discussions on Tur£n type extremal problems for 

subgraphs of random graphs, see [12, Chapter 8], [13], [14, Section 1.4.2], and 

[15]. 
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